Brick Geometry

Brickworld 2014 Chicago, Illinois June 13, 2014

Bill Ward

bill@wards.net

www.brickpile.com

Ratios and Dimensions

Basic LEGO Geometry 1 brick = 3 plates

Everyone knows this, I hope...

LEGO Dimensions

Quick! Memorize all these numbers. There will be a quiz later.

Math is Hard! LDU = LDraw Unit

- A $1 x 1$ stud brick or plate is $5 / 16$ " or 8 mm (0.8 cm)
- The height is $6 / 16$ " or $9.6 \mathrm{~mm}(0.96 \mathrm{~cm})$
- To make the math easier, LDraw designers came up with the LDraw Unit (LDU)
- Everything is a nice, easy integer this way!

	LDU		studs			bricks	plates	
LDU	1		cm	$\underline{\text { inch }}$	pt			
LDU	$1 / 20$	$1 / 24$	$1 / 8$	0.04	$1 / 64$	$9 / 8$		
studs	20		1	$5 / 6$	$5 / 2$	0.8	$5 / 16$	$45 / 2$
bricks	24	$6 / 5$	1	3	0.96	$6 / 16$	27	
plates	8		$2 / 5$	$1 / 3$	1	0.32	$2 / 16$	9
cm	25	1.25	1.04	3.125	1	0.39	28.3	
inch	64	3.2	$8 / 3$	8	2.54	1	72	
pt	$8 / 9$	$2 / 45$	$1 / 27$	$1 / 9$	0.0353	$1 / 72$	1	

LEGO Bricks Are Not Square

Bricks are 8 mm wide by 9.6 mm high How do you make widths and heights match?

LDU makes the math easy....
How many plates = how many studs?

- 2 studs $=2 \times 20=40$ LDU
- 5 plates $=5 \times 8=40$ LDU

6:5 Brick Ratio

How many bricks = how many studs?

- 6 studs $=6 \times 20=120$ LDU
- 5 bricks $=5 \times 24=120$ LDU

Even Numbers of Studs

Any even number of studs corresponds to a combination of bricks and plates, since 2 studs $=5$ plates

4 studs =
$31 / 3$ bricks = 80 LDU
(or 10 plates)

2 studs =
$12 / 3$ bricks =
40 LDU
(or 5 plates)

Odd Numbers of Studs

Since 1 stud = $21 / 2$ plates, no combination of plates adds up to exactly one stud

1 stud $=20$ LDU
2 plates $=16$ LDU ?? = 4 LDU
(Missing $1 / 2$ plate!)

3 studs $=60$ LDU
1 brick +4 plates $=56$ LDU ?? = 4 LDU
(Missing ½ plate!)

2 stud $=40$ LDU
5 plates $=40$ LDU
(OK)

But where do you get $1 / 2$ plate?

One answer: brackets. The thin vertical plate is $1 / 2$ the thickness of a normal plate, or 4 LDU

Exception: 12mm (3 LDU) instead of
16mm (4 LDU)

1 plate $=8$ LDU thick
1 stud brick = 20 LDU
2 plates + bracket $=$

$$
\begin{array}{r}
8 * 2+4= \\
20 \text { LDU }
\end{array}
$$

SNOT

Studs Not On Top

Using $1 / 2$ plate thickness from brackets

Bricks with Studs on the Side

LEGO has plenty of parts that have studs on the side, useful for SNOT (Studs Not On Top) design, similar to the brackets.

Caveat - Technic Pin Alignment

- Technic pin hole placement is just a little higher (about 0.2mm) than stud-on-side placement.
- Some models may have alignment problems due to this.
- Reason: early Technic brick molds needed thicker plastic between pinhole and bottom of brick.
- Result: LEGO now produces more bricks with studs on side instead of using $1 ⁄ 2$ pins in Technic bricks - better for us anyway

Bricks with studs on sides
 to mount flush

Use bricks with studs on sides to attach assemblies at 90 degrees. To mount them flush, remember that 5 plates $=2$ studs $=40$ LDU.

Flush tile examples

Inset Panels

Use half-plate offsets to add texture to an otherwise flat wall

Tiles are $1 / 2$ plate inset

1 plate +2 studs (1 2/3 brick) = 2 bricks

2 plates +4 studs (3 1/3 bricks) = 4 bricks

Inset panels example

My F40PH Caltrain locomotive

"De Vier Gekroonden"

This model by Vincent "Mr. Tomato Bread" Kessels uses some of these techniques.

Photos used with permission

Sideways Building with Brackets

- Stack bricks and plates with a tile on the end
- Mount on bracket on each side facing inward
- 3 bricks $=3 \times 24=72$ LDU

Model:
"De Vier Gekroonden"
by Vincent Kessels
a.k.a.
"Mr. Tomato Bread"

7 plates +1 tile $=8 \times 8=64$ LDU bracket = 4 LDU Total $=140$ LDU $=7$ studs

- Tiles on the ends press together and friction holds it all together

The Problem with Jumper Plates

- Requirement: 5-stud wide window openings with 6-stud wide arches above.
- Solution: offset the arches by $1 / 2$ stud using jumper plates
- Side effect: How to fill $1 / 2$ stud gap on ends?
- Imperfect solution: attach tile mounted sideways.
- $1 / 2$ stud $=10$ LDU. Tile $=8$ LDU. Gap of 2 LDU ($1 / 4$ plate) cannot be filled by any LEGO part. Any better ideas to fill a 10 LDU space?

Model:
"De Vier Gekroonden"
by Vincent Kessels
a.k.a.
"Mr. Tomato Bread"

Mosaic Dates on LEGO Modular Sets

These sets (\#10197 \& 10224) use plates and tiles to create SNOT dates on the buildings.

http://commons.wikimedia.org/wiki/File:Lego_Modular_-_Set_10197_Fire_Brigade_\(6817665156\).jpg http://commons.wikimedia.org/wiki/File:Lego_Modular_-_Set_10224_Town_Hall_\(8310511639\).jpg

Fun with Headlight Bricks

Headlight Brick Dimensions

Four headlight bricks

> 2 plates $($ red $)+$
> 3 plates $($ yellow $)=$ 5 plates $=2$ studs

Result: 5 plates or 2 studs in each of 4 directions.

Problem: Gradual Steps

How do you make a gentle slope?
What if these are too steep?

Gradual Steps

For a more gradual slope, we'd like to mount every other one $1 / 2$ plate higher

But, we have a half-plate hole to fill! How to attach these?

Solution: Headlight Bricks

Alternate rotations for headlight bricks to take advantage of $1 / 2$ plate offset in "foot"

2 plates $+1 / 2$ plate $=1$ stud

Half-plate lift from "foot"

Problem with "cheese slope": Stairstep effect

The 1×1 "cheese slope" is a very useful part but doesn't combine well with others of its kind to make a smooth slope.

This notch is needed for it to fit a stud inside, but is ugly.

Problem with "cheese slope": Stairstep effect

Turns out that "notch" is $1 / 2$ plate thick.

2 plates (height of cheese slope) $+1 / 2$ plate $=1$ stud

Solving the stairstep effect

Used in Bram Lambrecht's
"Legoland Spacelines 979" seen at BrickCon 2007
http://www.flickr.com/photos/bram/1461137007/ (used with permission)
Mount the center slope $1 / 2$ plate lower for a smooth surface!

Useful for trains, too

My F40PH Caltrain locomotive

"Headlight Brick"

VS.

"Brick 1×1 with Stud on 1 Side"

Headlight Brick depth $=2$ plates $=16$ LDU
Brick depth $=21 / 2$ plates $=20$ LDU
Combine these to achieve $1 / 2$ plate differences in depth!

Hospital Bay Window example

Windows (bottoms of bricks) are inset by $1 / 2$ plate

Triangles

Pythagorean Triples

Pythagorean Triples are right triangles where the sides are all integers. The $3-4-5$ triangle is easy to make in LEGO.

Trick is, count between the centers of the studs! Each side is one stud longer than you might expect.
Note: You may need spacer plates for the diagonal to clear the studs.

More Pythagorean Triples

- There are only 4 triples with the diagonal of length 25 or less:
- (3, 4, 5); (5, 12, 13); (8, 15, 17); (7, 24, 25)
- Additional ones can be made by multiplying these values by a scaling factor.
- Example: $(6,8,10)=2 x(3,4,5)$
- Any other triangle with integer sides will not be a right triangle!

Pythagorean Triple Example: Truss Bridge

Trusses made from (6, 8, 10) Pythagorean triangles

Additional Resources

- "Offset" page on brickwiki
http://www.brickwiki.info/wiki/Offset
- Reinhard Beneke, BrickFest PDX '04
http://www.brickshelf.com/cgi-bin/gallery.cgi?f=74539
- Previous versions of this presentation:
- BrickCon 2008: Half Plate Offsets http://www.brickpile.com/2008/10/07/half-plate-offsets-slides/
- BBTB 2013 \& BrickCon 2013: Brick Geometry http://www.brickpile.com/2013/10/17/slides-for-brickcon-brick-geometry-presentation/

Q\&A

Thank you

Contact me if you have any further questions...

bill@wards.net www.brickpile.com

Come to Bricks by the Bay! August 7-10, 2014
Santa Clara, California
www.bricksbythebay.com

